

Geological Survey of Northern Ireland

WATER FRAMEWORK DIRECTIVE

AQUIFER CLASSIFICATION SCHEME FOR NORTHERN IRELAND

Stimulating innovation enterprise and competitiveness

TITLE: WATER FRAMEWORK DIRECTIVE (2000/60/EC)

AQUIFER CLASSIFICATION SCHEME FOR NORTHERN IRELAND

AUTHOR: P J McCONVEY

Report Status: Commissioned report for Water Management Unit, Environment and Heritage Service, DoE Northern Ireland.

EXCLUSION OF WARRANTY

This report is compiled in good faith by GSNI from information obtained from its own researches and/or received from a number of different sources. The GSNI and the Department of Enterprise, Trade and Investment give no warranties express or implied in relation to, and disclaim all responsibility for, the quality and/or accuracy of the information contained in this report, howsoever that information may have been obtained or received, or as to its suitability for any use. GSNI and the Department of Enterprise Trade and Investment accept no liability whatsoever in respect of loss, damage, injury or death arising out of or in any way related to information contained in this report.

OWNERSHIP AND CONDITIONS OF USE

Information supplied by the GSNI is provided on the strict understanding that, in order to comply with ownership rights and any express conditions of deposit, it is used for the sole purposes of the customer and is not passed in any form whatsoever, to a third party. This does not preclude the use of such information by a consultant where it was sought for the purposes of satisfying a contract and subsequently incorporated in a report to the client.

CONTENTS

PAGE

Summary

1.0	Introduction	1
2.0	Previous Northern Ireland Aquifer Classification Scheme	1
3.0	Northern Ireland WFD Aquifer Classification Scheme	3
4.0	Bedrock Aquifer Map Production	4
5.0	Cross-referencing of NI and RoI Schemes	6
6.0	Conclusion	7
Referen	nces	

FIGURES

Figure 1	WFD Aquifer bedrock classes	5
I iguic i	WID Aquiter bearberk classes	5

TABLES

Table 1	BGS aquifer classification scheme	2
Table 2	Aquifer categories and descriptions	3
Table 3	Aquifer classes and example rock formations	4
Table 4	RoI aquifer classification scheme	6
Table 5	RoI aquifer groups	7
Table 6	Cross-referencing of NI and RoI schemes	7

Appendix 1

SUMMARY

A new aquifer classification scheme has been devised for Northern Ireland. It is proposed for use initially for Water Framework Directive groundwater characterisation.

In devising the scheme, consideration has been given to a number of factors including:

- Aquifer definitions and objectives for groundwater in the Water Framework Directive (2000/60/EC);
- Compatibility with the existing Republic of Ireland aquifer classification system;
- The existing British Geological Survey aquifer classification scheme for Northern Ireland and
- Availability of hydrogeological data.

The classification comprises eight classes of aquifers based upon geological strata type, relative resource productivity and flow type.

The proposed classification scheme is shown in the table below.

Aquifer Category	Symbol	Description
Bedrock	·	
High Productivity	Bh (f)	High to moderate yields probable, however
Fracture Flow		possible Generally includes element of regional
		flow (km's).
High Productivity	Bh (I-f)	High to moderate yields probable, however part
Fracture/Intergranular Flow		dependence on fracture flow makes poorer yields
		element of regional flow.
High Productivity	Bh (f-k)	High to moderate yields probable, however
Fracture flow with karstic element	` '	dependence on fracture flow makes poorer yields
		possible. Evidence of karstic flow. Generally
Madarata Productivity	Due (f)	High to moderate violds possible in places
Fracture Flow	Bm (1)	however dependence on fracture flow makes
		poorer vields possible. Potential element of
		regional flow, but local flow significant.
Limited Productivity	Bl (f)	Moderate yields unusual. Low yields more
Fracture Flow		common. Regional flow limited. Mainly shallow,
		local flow.
Poor Productivity	Bp (f)	Small supplies may be possible but strata rarely
Fracture Flow		exploited. Negligible regional flow. Limited local
Superficials		110w
Lish Draductivity	C1 (T)	II'm to moderate siglide metable in most enco
Intergranular Flow	Sh (1)	Permeability high
Moderate Productivity	Sm (I)	Moderate vields possible Permeability moderate
Intergranular Flow		inductate yields possible. I ennedomity moderate.

WATER FRAMEWORK DIRECTIVE (2000/60/EC)

AQUIFER CLASSIFICATION SCHEME FOR NORTHERN IRELAND

1.0 INTRODUCTION

The Water Framework Directive (2000/60/EC) requires Member States to assess and manage all waters within their boundaries in a unified manner. For groundwater, *groundwater bodies* have to be delineated and characterised using guidance outlined in the Directive.

The Water Framework Directive (WFD) describes a groundwater body as a '*distinct volume of water within an aquifer or aquifers*'.

Similarly, **'aquifer'** means a subsurface layer or layers of rock or other geological strata of sufficient porosity and permeability to allow either a significant flow of groundwater or the abstraction of significant quantities of groundwater.

This definition of aquifer can be further qualified by the following statement from the directive:

'Aquifers are defined on the basis of the groundwater bodies contained within them supplying more than 10 m^3 /day or providing significant flow to surface water bodies or terrestrial ecosystems'.

From the above, prior to delineating groundwater bodies, there is an obvious requirement to define and describe aquifers across Northern Ireland (NI) in the context of WFD guidance and objectives.

2.0 PREVIOUS NORTHERN IRELAND AQUIFER CLASSIFICATION SCHEME

Following on from a baseline hydrogeological survey of NI, carried out in the early 1990's, an aquifer classification of bedrock and superficials deposits was produced by the British Geological Survey (BGS). This classification of aquifers in NI is depicted and described on the '*Hydrogeological Map of Northern Ireland*', (BGS, 1994). Further details can be found in the publication '*Hydrogeology of Northern Ireland*' (Robins, 1996). Using a variety of stratigraphic, lithostratigraphic and lithological nomenclature, units or regions of bedrock and superficial deposits were assigned to one of three main groups. Each of the three main groups was further subdivided into two categories as summarised in Table 1.

	Aquifer Type	Sub-type		
1	Aquifers in which intergranular flow is significant	a. Highly productive aquifers (not extensive)		
		b. Locally important aquifers		
2	Aquifers in which flow is dominantly in fissures and other discontinuities	a. Highly productive aquifers (not extensive)		
		b. Locally important aquifers		
3	Aquifers of limited potential, regions without significant groundwater	a. Aquifers with limited or local potential		
		b. Regions underlain by impermeable rocks: generally without groundwater except at shallow depth		

Table 1 BGS Aquifer classification scheme

All bedrock and certain, more permeable, superficial deposits were assigned to one of these sub-groups

The classification is based on the UNESCO international legend for hydrogeological maps (UNESCO, 1983) and gives information on the predominant type of flow (intergranular/fissure) and the relative resource potential of an aquifer unit. The classification categories and subsequent assigning of rock units to them partly reflected the general understanding of the UK hydrogeological community at that time regarding what constituted an aquifer and non-aquifer and the perceived significance and scale with respect to major aquifer systems across the UK.

The hydrogeological map produced was mainly based upon the existing geological divisions and boundaries as defined on the 1:250 000 geological bedrock map (GSNI, 1977), available at the time, but included modifications to Palaeogene and Devonian/Carboniferous boundaries. Since then, a revised and updated 1:250 000 bedrock geological map (GSNI, 1997) has been published. This map revised geological boundaries based upon more recent mapping and used an updated lithostratigraphical framework. As part of the map production process, extensive liaison was undertaken with the Geological Survey of Ireland (GSI) to review and agree cross-border geological boundaries and formation descriptions.

It is considered that this existing aquifer classification scheme is not directly appropriate for the characterisation work required under the WFD. In addition to the above issues relating to the out-dated base geological data used, the terminology employed and the assigning of particular strata to certain aquifer categories requires updating to reflect the definitions and objectives of the WFD. Nevertheless the hydrogeological map and aquifer classification scheme used provides a good starting point for the development of an updated scheme.

3.0 NORTHERN IRELAND WFD AQUIFER CLASSIFICATION SCHEME

A new aquifer classification scheme has been developed to meet the requirements of the WFD. The WFD emphasises the relative importance of materials supplying even small supplies of water in addition to acknowledging the key contribution groundwater plays in

supporting flows and ecological communities in rivers and wetlands. Given the objectives of the WFD, it was considered necessary to develop an appropriate aquifer classification scheme.

The WFD requires particularly close assessment of water bodies that extend across Member States territorial borders. Such bodies will be assigned to an International River Basin District. For this and other practical reasons, a compatible approach for classifying aquifers is desirable within NI and the Republic of Ireland (RoI) to help ensure a consistent approach is taken in implementing the WFD across the border areas.

For the purposes of the WFD analysis, the aquifer classification scheme has considered the following elements in defining aquifer type/category:

- 1) Strata type (Bedrock or Superficial);
- 2) Relative 'productivity' with respect to exploitation history/well yields (where data available): and
- 3) Flow type (intergranular, fractured, karstic or combination).

The classification scheme is shown in Table 2 below.

Aquifer Category	Symbol	Description	
Bedrock			
High Productivity	Bh (f)	High to moderate yields probable, however	
Fracture Flow		dependence on fracture flow makes poorer yields	
		possible. Generally includes element of regional	
	51 (7.9	flow (km s).	
High Productivity	Bh (I-f)	High to moderate yields probable, however part	
Fracture/Intergranular Flow		possible Dual porosity Constally includes	
		element of regional flow	
High Productivity	Bh(f-k)	High to moderate yields probable however	
Fracture flow with karstic element	Dir (i k)	dependence on fracture flow makes poorer yields	
		possible. Evidence of karstic flow. Generally	
		includes element of regional flow.	
Moderate Productivity	Bm (f)	High to moderate yields possible in places	
Fracture Flow		however dependence on fracture flow makes	
		poorer yields possible. Potential element of	
Linette d Day de stielter	D1 (0	regional flow, but local flow significant.	
Limited Productivity	BI (f)	Moderate yields unusual. Low yields more	
Flacture Flow		local flow	
Poor Productivity	Bn (f)	Small supplies may be possible but strata rarely	
Fracture Flow	DP (I)	exploited. Negligible regional flow. Limited local	
		flow	
Superficials			
High Productivity	Sh (I)	High to moderate yields probable in most areas.	
Intergranular Flow	. ,	Permeability high.	
Moderate Productivity	Sm (I)	Moderate yields possible. Permeability moderate.	
Intergranular Flow			

Aquifer type	B - Bedrock	S - Superficial		
Productivity	h - high	m – moderate	l – limited	p - poor
Flow Type	f - fracture	I - Intergranular		

Table 2 Aquifer categories and descriptions

This classification does not explicitly make any reference to whether an aquifer area is local or regional with respect to overall size and importance of resource. Given the relatively small size of NI 'regional' aquifers compared to the UK and even RoI and the de minimus quantities of water that could be considered 'significant' under the WFD, it is not thought important to define this element. However the descriptions do indicate whether regional **flow** (kms) is likely to be operating. Only the Sherwood Sandstone aquifer in the Lagan and Enler Valleys could be considered a regional aquifer in an Irish or UK context. On some summary maps for the island of Ireland, the Palaeogene Basalt has been defined as a 'major' aquifer probably due to the significant aerial extent of this rock unit. However, the nature of the aquifer is such that yields are generally only moderate at best and local groundwater flow systems are likely to predominate.

4.0 BEDROCK AQUIFER MAP PRODUCTION

Each rock unit, formation or group as defined on the 1:250 000 bedrock geological map (GSNI, 1997) has been assigned to one of the aquifer classes listed in Table 2. During this process, consideration has been given to the aquifer classification of similar units in the RoI to ensure compatibility. Where possible, published and unpublished data have been reviewed and reference made to previous hydrogeological work when assigning rock formations to a particular class. However, it must be recognised that detailed and systematic collection and analysis of hydrogeological data for a substantial area of Northern Ireland has yet to be undertaken. It is intended that this classification will show which are the 'better' aquifers and which are the 'poorest'. As characterisation progresses and knowledge improves, it would be expected that some reassignment to a higher or lower aquifer class might be appropriate for a minority of rock formations. The aquifer classification for rock units as displayed on the 1:250 000 bedrock geological map (GSNI, 1997), used for WFD initial characterisation in 2004, is shown in Appendix 1.

Aquifer classes and typical rock units/formations falling within each class are shown in Table 3. The distribution of these bedrock aquifer classes across NI is shown in Figure 1. It should be noted that the scheme allows particular formations to be assigned to different aquifer classes in different areas where their hydrogeological characteristics justifies this.

Aquifer Category	Symbol	Typical Rock Units / Formations			
High productivity	Bh (f)	Certain Carboniferous basal formations			
Fracture Flow					
High Productivity	Bh (I-f)	Permo-Triassic Sandstones			
Fracture/Intergranular					
Flow					
High Productivity	Bh (f-k)	Carboniferous Darty Limestone with Knockmore			
Fracture flow with		Limestone Member (in places)			
karstic element		Carboniferous Ballyshannon Limestone Formation			
		Ulster White Limestone Formation (Chalk)			
Moderate Productivity	Bm (f)	Palaeogene Basalts			
Fracture Flow		Certain Carboniferous Dinatian Sandstones			
Limited Productivity	Bl (f)	Ordovician/Silurian strata			
Fracture Flow		Dalradian strata			
		Devonian strata			
		Granites and Intrusives			
Poor Productivity	Bp (f)	Lough Neagh Clay Group			
Fracture Flow	/	Mercia Mudstone Group			
		Waterloo Mudstone Formation			

Table 3 Aquifer classes and example rock formations

Figure 1 WFD Bedrock aquifer classes

5.0 CROSS-REFERENCING OF NORTHERN IRELAND AND REPUBLIC OF IRELAND SCHEMES

Significant areas of NI fall within International River Basin Districts, with aquifers extending across the political boundary and local surface water catchments into the RoI. Therefore there is a clear need to ensure a degree of compatibility in aquifer classification to ensure a common understanding is developed and a similar approach to characterisation followed.

The GSI has produced a scheme for aquifer classification based upon knowledge of a particular rock unit with respect to its extent, productivity and key hydrogeological features (GSI, 2003). This classification has been used in particular for the Groundwater Protection Schemes produced for local councils. Rules have been developed which guide the determination of which category a particular rock unit falls into. The classification is split into bedrock and sand/gravel aquifers and the categories are shown below in Table 4.

Class	Sub-class	Code		
Bedrock Aquifers				
Regionally Important Aquifer	Karst, Good development potential	Rk		
	Karst conduit	Rkc		
	Karst diffuse	Rkd		
	Fissured bedrock, Good development	Rf		
	potential			
Locally Important Aquifer	Generally moderately productive	Lm		
	Moderately productive only in local zones	Ll		
Poor Aquifer	Generally unproductive except for local	Pl		
	zones			
	Generally unproductive	Pu		
Sand and Gravel Aquifers				
Regionally Important Aquifer	Sand/gravel	Rg		
Locally Important Aquifer	Sand/gravel	Lg		

Table 4 RoI aquifer classification scheme

GSI consider, for the RoI, all bedrock will qualify as a WFD aquifer along with sand/gravel deposits meeting certain minimum aerial size and saturated thickness criteria. In NI a similar approach has been taken such that all bedrock qualifies as a WFD aquifer unless proven otherwise. However, due to the different geological settings between NI and RoI, in NI a very small number of lithostratigraphic units will potentially be considered as not qualifying as WFD aquifers (e.g. Lough Neagh Group). Within superficial deposits, sand/gravel deposits are generally classified as aquifers similar to the Republic of Ireland. In Scotland and England and Wales, alluvium and even sandy glacial till deposits have been regarded as aquifers in certain localities.

For the purposes of the WFD, RoI are grouping their aquifer types into four main groups as shown in Table 5:

Description	Aquifer types
Regionally Important Karstic aquifers	Rk, Rkc, Rkd
Gravel aquifers	Rg and Lg
Productive Fractured Bedrock aquifers	Rf and Lm
Poorly Productive Bedrock aquifers	Ll, Pl and Pu

Table 5RoI aquifer groups

The grouping is based upon similarities in a) hydrogeological properties; b) resource value; c) likely monitoring approaches and d) likely influence of surface water characterisation (Groundwater Working Group, 2001). The groups will be considered as general groundwater body types.

It is noted that in the RoI, depending on factors such as structural setting, well-yield data, aerial extent etc., specific rock formations can be classed differently in different areas.

It is considered that the following cross-reference can broadly be made between the scheme for NI and the existing RoI scheme (Table 5).

Aquifer Category	NI	RoI	Comments			
Bedrock						
High productivity	Bh (f)	Rf				
Fracture Flow	~ /					
High Productivity	Bh (I-f)		No bedrock units in RoI contain any			
Fracture/Intergranular Flow	、 <i>´</i>		significant intergranular porosity			
High Productivity	Bh (f-k)	Rk,	Differentiation of karstic flow not			
Fracture flow with karstic element	~ /	Rkc,	undertaken in NI at 1:250 000 scale.			
		Rkd				
Moderate Productivity	Bm (f)	Lm				
Fracture Flow						
Limited Productivity	Bl (f)	Ll, Pl				
Fracture Flow		,				
Poor Productivity	Bp (f)	Pu				
Fracture Flow	1 ()					
Superficials						
High Productivity	Sh (I)	Rg, Lg				
Intergranular Flow	``	0,0				
Moderate Productivity	Sm (I)		No equivalent category in RoI.			
Intergranular Flow						

Table 6 Cross-referencing of NI and RoI schemes

6.0 CONCLUSION

A new aquifer classification system has been defined for NI to meet the requirements for the WFD. In designing the classification, consideration has been given to:

- 1) Aquifer definitions and objectives for groundwater in the WFD;
- 2) Compatibility with the RoI aquifer classification system;
- 3) Previous BGS aquifer classification for NI; and
- 4) Limitations of current hydrogeological data availability.

The classification will allow representation of NI geology with respect to its considered relative importance for water supply, dominant flow mechanism and type (bedrock/superficial). Based upon this classification, certain assumptions can be made regarding the relative importance with respect to surface water interaction. This work will assist with ensuring that a consistent approach is taken to the delineation and description of groundwater bodies, as required by the WFD and should also help assess the degree of risk from 'potential pressures' identified as part of the characterisation process.

As more detailed hydrogeological assessment of specific areas and rock formations is undertaken it is considered that demotion or promotion of individual rock units to a higher or lower aquifer category may be necessary. Additional aquifer categories (e.g. Bm (I-f)) may also be required upon application of the classification scheme to 1:50 000 geological data layers. At present, use of this classification scheme is intended primarily for WFD initial and further characterisation work. It is recommended that any application of the classification for other purposes should only proceed following consultation with GSNI or Environment and Heritage Service (EHS).

The classification used has similarities with the RoI classification and as such will allow a broadly common understanding of aquifer descriptions in cross-border river basins to be achieved.

REFERENCES

British Geological Survey, 1994. Hydrogeological Map of Northern Ireland. 1:250 000 (Keyworth, Nottingham; British Geological Survey)

Geological Survey of Ireland, 2003. An aquifer classification for the Republic of Ireland (draft)

Geological Survey of Northern Ireland, 1977. Geological map of Northern Ireland. 1:250 000 Solid edition. (Belfast, Geological Survey of Northern Ireland)

Geological Survey of Northern Ireland, 1997. Northern Ireland Solid Geology (2nd Edition). 1:250 000 (Keyworth, Nottingham; British Geological Survey)

Groundwater Working Group, 2001. Water Framework Directive. River Basin District Management Systems. *Technical Requirements for Groundwater and Related Aspects*. Interim Report of Working Group on Groundwater (Ireland).

Robins, N.S. 1996. Hydrogeology of Northern Ireland. (London: HMSO for the British Geological Survey.)

UNESCO, 1983. International legend for hydrogeological maps, revised version. IAH/IAHS/UNESCO

Appendix 1

Aquifer classification of 1:250 000 solid geology map rock unit formations/groups used for WFD initial characterisation, 2004.

NB: Modifications to this classification may occur as the result of ongoing assessment and GSNI should be contacted for updates where necessary. Direct application to 1:50 000 solid geology map layers will require additional modifications/adaptation.

Rock Unit (1:250k Solid Geology Digital Layer)	Rock Unit Group	Aquifer Category
Cooldaragh Formation	Dinantian (early) Sandstones, Shales and Limestones	Bh(f)
Ulster Canal Formation	Dinantian (early) Sandstones, Shales and Limestones	Bh(f)
Ballysteen Formation	Dinantian Lower Impure Limestones	Bh(f)
Fearnaght Formation	Dinantian Sandstones	Bh(f)
Ballyshannon Limestone Formation	Dinantian Pure Bedded Limestones	Bh(f-k)
Dartry Limestone Formation	Dinantian Pure Bedded Limestones	Bh(f-k)
Ballyshannon Limestone Formation	Dinantian Pure Unbedded Limestones	Bh(f-k)
Knockmore Limestone Member	Dinantian Pure Unbedded Limestones	Bh(f-k)
Hibernian Greensands & Ulster White Limestone Formations	Upper Cretaceous chalk & greensand	Bh(f-k) ⁽¹⁾
	Darma Triaggia Sandatanga	
Enier Group	Permo-Triassic Sandstones	
Snerwood Sandstone Group	Permo-Triassic Sandstones	BU(I-I)
Clean bar Valley Formation	Dimension (apply) Conditioned Challes and Limestance	Dres (f)
Clogner valley Formation	Dinantian (early) Sandstones, Shales and Limestones	$\frac{Bffl(I)}{Bm(f)}$
Realizator Linestone Formation	Dinantian Mixed Sandstones, Shales and Limestones	DIII(I)
Billynese Fermetien	Dinantian Pule Bedded Limestones	DIII(I) Dm(f)
Ballyness Formation	Dinantian Sandstones	DIII(I) Dm(f)
Corpmore Sondetene Member	Dinantian Sandstones	DIII(I) Dm(f)
Carriekanese Sendetene Formation	Dinantian Sandstones	DIII(I) Dm(f)
Clarach Sandstone Formation	Dinantian Sandstones	Bm(f)
Derryloran Formation	Dinantian Sandstones	Bm(f)
Clenade Sandstone/Bellavalley Formations	Dinantian Sandstones	Bm(f)
Mullaghmore Sandstone Formation	Dinantian Sandstones	Bm(f)
Omage Sandstone Group	Dinantian Sandstones	Bm(f)
Topped Mountain Sandstone Formation	Dinantian Sandstones	Bm(f)
Armagh Group	Dinantian Salusiones	Bm(f)
Carboniferous Limestone Supergroup (undivided)	Dinantian Shales and Limestones	Bm(f)
Drumgesh Shale Formation	Dinantian Shales and Limestones	Bm(f)
Maydown Limestone Formation	Dinantian Shales and Limestones	Bm(f)

Rockdale Limestone Formation	Dinantian Shales and Limestones	Bm(f)
Desertmartin Limestone Formation	Dinantian Upper Impure Limestones	Bm(f)
Ballylagan Member	Palaeogene basalts & other volcanic rocks	Bm(f)
Causeway Tholeiite Member	Palaeogene basalts & other volcanic rocks	Bm(f)
Coagh Conglomerate Member	Palaeogene basalts & other volcanic rocks	Bm(f)
Interbasaltic Formation	Palaeogene basalts & other volcanic rocks	Bm(f)
Lower Basalt Formation	Palaeogene basalts & other volcanic rocks	Bm(f)
Port na Spaniagh Member	Palaeogene basalts & other volcanic rocks	Bm(f)
Upper Basalt Formation	Palaeogene basalts & other volcanic rocks	Bm(f)
Barrack Hill Andesite Member	Basalts & other Volcanic rocks	BI(f)
Shanmullagh Formation	Basalts & other Volcanic rocks	BI(f)
Carboniferous Limestone Supergroup (undivided)	Basalts & other Volcanic rocks	BI(f)
Cross Slieve Group	Devonian Old Red Sandstones	BI(f)
Gortfinbar Conglomerate Formation	Devonian Old Red Sandstones	BI(f)
Raveagh Sandstone Formation	Devonian Old Red Sandstones	BI(f)
Red Arch Formation	Devonian Old Red Sandstones	BI(f)
Shanmaghery Sandstone Formation	Devonian Old Red Sandstones	BI(f)
Tedd Formation	Devonian Old Red Sandstones	BI(f)
Altagoan Formation	Dinantian (early) Sandstones, Shales and Limestones	BI(f)
Annaclare Group	Dinantian (early) Sandstones, Shales and Limestones	BI(f)
Barony Glen Formation	Dinantian (early) Sandstones, Shales and Limestones	BI(f)
Holywood Group	Dinantian (early) Sandstones, Shales and Limestones	BI(f)
Meenymore Formation	Dinantian Mixed Sandstones, Shales and Limestones	BI(f)
Ballydurnian Breccia Formation	Dinantian Sandstones	BI(f)
Drumman More Sandstone Formation	Dinantian Sandstones	BI(f)
Iniscarn Formation	Dinantian Sandstones	BI(f)
Owenkillew Sandstone Group	Dinantian Sandstones	BI(f)
Quarry Sandstone Member	Dinantian Sandstones	BI(f)
Alderwood Mudstone	Dinantian Shales and Limestones	BI(f)
Benbulben Shale Formation	Dinantian Shales and Limestones	BI(f)
Bundoran Shale Formation	Dinantian Shales and Limestones	BI(f)
Castle Espie Group	Dinantian Shales and Limestones	BI(f)
Keenaghan Shale Formation	Dinantian Shales and Limestones	BI(f)

Rossmore Mudstone Formation	Dinantian Shales and Limestones	BI(f)
Glencar Limestone Formation	Dinantian Upper Impure Limestones	BI(f)
Ballyrainey Sill	Granites & other Igneous Intrusive rocks	BI(f)
Beragh Granite	Granites & other Igneous Intrusive rocks	BI(f)
Carrickmore Granite	Granites & other Igneous Intrusive rocks	BI(f)
Craigbardahessiagh Granodiorite	Granites & other Igneous Intrusive rocks	BI(f)
Dundonald Sill	Granites & other Igneous Intrusive rocks	BI(f)
Fair Head Sill	Granites & other Igneous Intrusive rocks	BI(f)
Garrison Sill	Granites & other Igneous Intrusive rocks	BI(f)
Laght Hill Tonalite	Granites & other Igneous Intrusive rocks	BI(f)
Magilligan Sill	Granites & other Igneous Intrusive rocks	BI(f)
Mourne Mountains Granite G1	Granites & other Igneous Intrusive rocks	BI(f)
Mourne Mountains Granite G2	Granites & other Igneous Intrusive rocks	BI(f)
Mourne Mountains Granite G3	Granites & other Igneous Intrusive rocks	BI(f)
Mourne Mountains Granite G4	Granites & other Igneous Intrusive rocks	BI(f)
Mourne Mountains Granite G5	Granites & other Igneous Intrusive rocks	BI(f)
Newry Granodiorite Complex	Granites & other Igneous Intrusive rocks	BI(f)
Newry Granodiorite Complex Phase 1	Granites & other Igneous Intrusive rocks	BI(f)
Newry Granodiorite Complex Phase 2	Granites & other Igneous Intrusive rocks	BI(f)
Newry Granodiorite Complex Phase 3	Granites & other Igneous Intrusive rocks	BI(f)
Pomeroy Granite	Granites & other Igneous Intrusive rocks	BI(f)
Portrush Sill	Granites & other Igneous Intrusive rocks	BI(f)
Scrabo Sill	Granites & other Igneous Intrusive rocks	BI(f)
Shane's Hill Rhyodacite	Granites & other Igneous Intrusive rocks	BI(f)
Slieve Gallion Granite	Granites & other Igneous Intrusive rocks	BI(f)
Slieve Gullion Complex	Granites & other Igneous Intrusive rocks	BI(f)
Tardree Rhyolite Complex	Granites & other Igneous Intrusive rocks	BI(f)
Tremoge Glen Granite	Granites & other Igneous Intrusive rocks	BI(f)
Tyrone Plutonic Group	Granites & other Igneous Intrusive rocks	BI(f)
Un-named dyke, Palaeogene	Granites & other Igneous Intrusive rocks	BI(f)
Un-named intrusion, early Caledonian	Granites & other Igneous Intrusive rocks	BI(f)
Un-named intrusion, late Caledonian	Granites & other Igneous Intrusive rocks	BI(f)
Un-named intrusion, Palaeogene	Granites & other Igneous Intrusive rocks	BI(f)
Un-named intrusion, Pre-Caledonian	Granites & other Igneous Intrusive rocks	BI(f)

Un-named sill, Palaeogene	Granites & other Igneous Intrusive rocks	BI(f)
Briscloonagh Sandstone Formation	Namurian Sandstones	BI(f)
Greenan Sandstone Formation	Namurian Sandstones	BI(f)
Millstone Grit Group	Namurian Sandstones	BI(f)
Ballinamallard Mudstone Formation	Namurian Shales	BI(f)
Desertcreat Group	Ordovician Metasediments	BI(f)
Gilnahirk Group	Ordovician Metasediments	BI(f)
Moffat Shale Group	Ordovician Metasediments	BI(f)
Strokestown Group	Ordovician Metasediments	BI(f)
Copney Pillow Lava Formation	Ordovician Volcanics	BI(f)
Helen's Bay Formation	Ordovician Volcanics	BI(f)
Tyrone Volcanic Group	Ordovician Volcanics	BI(f)
Belfast Group	Permo-Triassic Mudstones and Gypsum	BI(f)
Aghyaran Formation	Precambrian Marbles	BI(f)
Dungiven Formation	Precambrian Marbles	BI(f)
Torr Head Limestone Formation	Precambrian Marbles	BI(f)
Aghyaran Formation	Precambrian Quartzites, Gneisses & Schists	BI(f)
Altmore Formation	Precambrian Quartzites, Gneisses & Schists	BI(f)
Ballykelly Formation	Precambrian Quartzites, Gneisses & Schists	BI(f)
Claudy Formation	Precambrian Quartzites, Gneisses & Schists	BI(f)
Corvanaghan Formation	Precambrian Quartzites, Gneisses & Schists	BI(f)
Croaghgarrow Formation	Precambrian Quartzites, Gneisses & Schists	BI(f)
Dart Formation	Precambrian Quartzites, Gneisses & Schists	BI(f)
Dungiven Formation	Precambrian Quartzites, Gneisses & Schists	BI(f)
Glendun Formation	Precambrian Quartzites, Gneisses & Schists	BI(f)
Glenelly Formation	Precambrian Quartzites, Gneisses & Schists	BI(f)
Glengawna Formation	Precambrian Quartzites, Gneisses & Schists	BI(f)
Killeter Quartzite Formation	Precambrian Quartzites, Gneisses & Schists	BI(f)
Londonderry Formation	Precambrian Quartzites, Gneisses & Schists	BI(f)
Lough Derg Group	Precambrian Quartzites, Gneisses & Schists	BI(f)
Lough Esk Psammites	Precambrian Quartzites, Gneisses & Schists	BI(f)
Lough Mourne Grit	Precambrian Quartzites, Gneisses & Schists	BI(f)
Mullaghcarn Formation	Precambrian Quartzites, Gneisses & Schists	BI(f)
Mullyfa Formation	Precambrian Quartzites, Gneisses & Schists	BI(f)

Murlough Bay Formation	Precambrian Quartzites, Gneisses & Schists	BI(f)
Newtownstewart Formation	Precambrian Quartzites, Gneisses & Schists	BI(f)
Owencam Formation	Precambrian Quartzites, Gneisses & Schists	BI(f)
Runabay Formation	Precambrian Quartzites, Gneisses & Schists	BI(f)
Shanaghy Green Bed Formation	Precambrian Quartzites, Gneisses & Schists	BI(f)
Torr Head Limestone Formation	Precambrian Quartzites, Gneisses & Schists	BI(f)
Gala Group	Silurian Metasediments and Volcanics	BI(f)
Hawick Group	Silurian Metasediments and Volcanics	BI(f)
Lisbellaw Formation	Silurian Metasediments and Volcanics	BI(f)
Little River Group	Silurian Metasediments and Volcanics	BI(f)
Slievebane Group	Westphalian Sandstones	BI(f)
Coal Measures Group	Westphalian Shales	BI(f)
Dunaghy Formation	Oligocene mudstones	Bp(f)
Lough Neagh Group	Oligocene mudstones	Bp(f)
Mercia Mudstone Group	Permo-Triassic Mudstones and Gypsum	Bp(f)
Penarth Group	Permo-Triassic Mudstones and Gypsum	Bp(f)
Waterloo Mudstone Formation	Permo-Triassic Mudstones and Gypsum	Bp(f)

(1) – These two formations have been combined on the 1:250 000 solid geology map and overall, fracture and karstic flow considered dominant. However the Hibernian Greensands also have a component of intergranular flow.

(2) – Within NI, generally taken as Bl(f), however one area taken as Bm(f) where it extends into RoI and where local investigations indicate this higher productivity potential locally.

Geological Survey of Northern Ireland

Your views on this document are welcome.

March 2005

Geological Survey of Northern Ireland Colby House Stranmillis Court Belfast, BT9 5BF

E: peter.mcconvey@detini.gov.uk T: 028 9038 8462 F: 028 9038 8461 www.bgs.ac.uk/gsni